

AEROBIC SUBSURFACE MARS

Vlada Stamenković NASA Jet Propulsion Laboratory, California Institute of Technology

Michael Mischna (JPL), Lewis Ward (Harvard), Woody Fischer (Caltech), Doris Breuer (DLR), Ana Plesa (DLR) & the VALKYRIE Team.

Mars has almost no O₂ in its atmosphere today, so aerobic respiration should not matter, <u>right</u>?

Shallow subsurface brines and O₂ implications for aerobic life

Stamenković +, Nature Geo (2018)

Shallow subsurface brines and O₂ today in 3D...(& also in ancient times?)

Evidence that early Mars was more similar to today?

Stamenković +, Nature Geo (2018)

- Shallow environments can get O₂ from atmosphere.
- At depth, O₂ can be supplied by radiolysis
 - > see talk by Jesse Tarnas in 30 min.
- Aerobic respiration in the Martian subsurface is feasible today as long as there is liquid water (→ likely deep)

Min: 0 km Max: 8.24 km

VALKYRIE* concept: subsurface habitability as a stepping stone

*Volatiles And Life: Key Reconnaissance & In-Situ Exploration

A. Liquid Water

B. Energy & Nutrients

C. Cellular Stability

D. Biomarkers & **Signs of Metabolic Activity** LIFE

VALKYRIE* concept: subsurface habitability as a stepping stone

*Volatiles And Life: Key Reconnaissance & In-Situ Exploration

	Technology	TRL	Rational to Support TRL Claim	Lab Demo Field Demo
	Water: Transient Electromagnetic Sounder. Ballistic Loop deployment.	4	Based on existing technology that has been used for over 40 years. Mars TEM systems are being developed.	Yes. Started.
	Heat : Thermal Probe	8	Based on existing technology used on Earth. Simple, robust.	Yes. Yes.
	Subsurface Access: Drill (10-100 m)	5-6 4	PDD, AG2, & many more ASGARD	Yes. Yes. No. No
	 Geobiochemical Analysis: Trace Gases. Radiometer. UV/Raman Spectrometer GC-MS Optical microscope 	8-9	All successfully flown on MSL or being prepared for Mars 2020.	Yes. Yes.
	Surface Constraints:Met StationCamera	9	Successfully flown on Phoenix, MSL	Yes. Yes.

Summary: the Martian deep subsurface

